Regulation of inflammatory pain by inhibition of fatty acid amide hydrolase.

نویسندگان

  • Pattipati S Naidu
  • Steven G Kinsey
  • Tai L Guo
  • Benjamin F Cravatt
  • Aron H Lichtman
چکیده

Although cannabinoids are efficacious in laboratory animal models of inflammatory pain, their established cannabimimetic actions diminish enthusiasm for their therapeutic development. Conversely, fatty acid amide hydrolase (FAAH), the chief catabolic enzyme regulating the endogenous cannabinoid N-arachidonoylethanolamine (anandamide), has emerged as an attractive target for treating pain and other conditions. Here, we tested WIN 55212-2 [(R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de)-1,4-benzoxazin-6-yl]-1-napthalenylmethanone], a cannabinoid receptor agonist, and genetic deletion or pharmacological inhibition of FAAH in the lipopolysaccharide (LPS) mouse model of inflammatory pain. WIN 55212-2 significantly reduced edema and hot-plate hyperalgesia caused by LPS infusion into the hind paws, although the mice also displayed analgesia and other central nervous system effects. FAAH(-/-) mice exhibited reduced paw edema and hyperalgesia in this model without apparent cannabimimetic effects. Transgenic mice expressing FAAH exclusively on neurons continued to display the antiedematous, but not the antihyperalgesic, phenotype. The CB(2) cannabinoid receptor (CB(2)) antagonist SR144528 [N-[(1S)-endo-1,3,3-trimethyl bicyclo [2.2.1] heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide] blocked this non-neuronal, anti-inflammatory phenotype, and the CB(1) cannabinoid receptor (CB(1)) antagonist rimonabant [SR141716, N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide] blocked the antihyperalgesic phenotype. The FAAH inhibitor URB597 [cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester] attenuated the development of LPS-induced paw edema and reversed LPS-induced hyperalgesia through the respective CB(2) and CB(1) mechanisms of action. However, the transient receptor potential vanilloid type 1 antagonist capsazepine did not affect either the antihyperalgesic or antiedematous effects of URB597. Finally, URB597 attenuated levels of the proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha in LPS-treated paws. These findings demonstrate that simultaneous elevations in non-neuronal and neuronal endocannabinoid signaling are possible through inhibition of a single enzymatic target, thereby offering a potentially powerful strategy for treating chronic inflammatory pain syndromes that operate at multiple levels of anatomical integration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analgesic Effects of Fatty Acid Amide Hydrolase Inhibition in a Rat Model of Neuropathic

The Nottingham ePrints service makes this work by researchers of the University of Nottingham available open access under the following conditions. A note on versions: The version presented here may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher's version. Please see the repository url above for details on ...

متن کامل

Therapeutic Potential of Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and N-Acylethanolamine Acid Amidase Inhibitors.

Fatty acid ethanolamides (FAEs) and endocannabinoids (ECs) have been shown to alleviate pain and inflammation, regulate motility and appetite, and produce anticancer, anxiolytic, and neuroprotective efficacies via cannabinoid receptor type 1 (CB1) or type 2 (CB2) or via peroxisome proliferator-activated receptor α (PPAR-α) stimulation. FAEs and ECs are synthesized by a series of endogenous enzy...

متن کامل

Inhibition of Fatty Acid Binding Proteins Elevates Brain Anandamide Levels and Produces Analgesia

The endocannabinoid anandamide (AEA) is an antinociceptive lipid that is inactivated through cellular uptake and subsequent catabolism by fatty acid amide hydrolase (FAAH). Fatty acid binding proteins (FABPs) are intracellular carriers that deliver AEA and related N-acylethanolamines (NAEs) to FAAH for hydrolysis. The mammalian brain expresses three FABP subtypes: FABP3, FABP5, and FABP7. Recen...

متن کامل

Discovery of a potent, selective, and efficacious class of reversible alpha-ketoheterocycle inhibitors of fatty acid amide hydrolase effective as analgesics.

Fatty acid amide hydrolase (FAAH) degrades neuromodulating fatty acid amides including anandamide (endogenous cannabinoid agonist) and oleamide (sleep-inducing lipid) at their sites of action and is intimately involved in their regulation. Herein we report the discovery of a potent, selective, and efficacious class of reversible FAAH inhibitors that produce analgesia in animal models validating...

متن کامل

Discovery and molecular basis of potent noncovalent inhibitors of fatty acid amide hydrolase (FAAH).

Fatty acid amide hydrolase (FAAH), an amidase-signature family member, is an integral membrane enzyme that degrades lipid amides including the endogenous cannabinoid anandamide and the sleep-inducing molecule oleamide. Both genetic knock out and pharmacological administration of FAAH inhibitors in rodent models result in analgesic, anxiolytic, and antiinflammatory phenotypes. Targeting FAAH act...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of pharmacology and experimental therapeutics

دوره 334 1  شماره 

صفحات  -

تاریخ انتشار 2010